Neuromorphic systems require user-friendly software to support the design and optimization of experiments. In this work, we address this need by presenting our development of a machine learning-based modeling framework for the BrainScaleS-2 neuromorphic system. This work represents an improvement over previous efforts, which either focused on the matrix-multiplication mode of BrainScaleS-2 or lacked full automation. Our framework, called hxtorch.snn, enables the hardware-in-the-loop training of spiking neural networks within PyTorch, including support for auto differentiation in a fully-automated hardware experiment workflow. In addition, hxtorch.snn facilitates seamless transitions between emulating on hardware and simulating in software. We demonstrate the capabilities of hxtorch.snn on a classification task using the Yin-Yang dataset employing a gradient-based approach with surrogate gradients and densely sampled membrane observations from the BrainScaleS-2 hardware system.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.
translated by 谷歌翻译
Human behavior understanding requires looking at minute details in the large context of a scene containing multiple input modalities. It is necessary as it allows the design of more human-like machines. While transformer approaches have shown great improvements, they face multiple challenges such as lack of data or background noise. To tackle these, we introduce the Forced Attention (FAt) Transformer which utilize forced attention with a modified backbone for input encoding and a use of additional inputs. In addition to improving the performance on different tasks and inputs, the modification requires less time and memory resources. We provide a model for a generalised feature extraction for tasks concerning social signals and behavior analysis. Our focus is on understanding behavior in videos where people are interacting with each other or talking into the camera which simulates the first person point of view in social interaction. FAt Transformers are applied to two downstream tasks: personality recognition and body language recognition. We achieve state-of-the-art results for Udiva v0.5, First Impressions v2 and MPII Group Interaction datasets. We further provide an extensive ablation study of the proposed architecture.
translated by 谷歌翻译
肢体语言是一种引人注目的社交信号,其自动分析可以大大提高人工智能系统,以理解和积极参与社交互动。尽管计算机视觉在诸如头部和身体姿势估计之类的低级任务中取得了令人印象深刻的进步,但探索诸如示意,修饰或摸索之类的更微妙行为的发现尚未得到很好的探索。在本文中,我们介绍了BBSI,这是复杂的身体行为的第一组注释,嵌入了小组环境中的连续社交互动中。根据心理学的先前工作,我们在MpiigroupContraction数据集中手动注释了26个小时的自发人类行为,并具有15种不同的肢体语言类别。我们介绍了所得数据集的全面描述性统计数据以及注释质量评估的结果。为了自动检测这些行为,我们适应了金字塔扩张的注意网络(PDAN),这是一种最新的人类动作检测方法。我们使用四个空间特征的四种变体作为PDAN的输入进行实验:两流膨胀的3D CNN,颞段网络,时间移位模块和SWIN变压器。结果是有希望的,这表明了这项艰巨的任务改进的好空间。 BBSI代表了自动理解社会行为的难题中的关键作品,研究界完全可以使用。
translated by 谷歌翻译
加固学习在机器学习中推动了令人印象深刻的进步。同时,量子增强机学习算法使用量子退火的底层划伤。最近,已经提出了一种组合两个范例的多代理强化学习(MARL)架构。这种新的算法利用Q值近似的量子Boltzmann机器(QBMS)在收敛所需的时间步长方面具有优于常规的深度增强学习。但是,该算法仅限于单代理和小型2x2多代理网格域。在这项工作中,我们提出了对原始概念的延伸,以解决更具挑战性问题。类似于Classic DQN,我们添加了重播缓冲区的体验,并使用不同的网络来估计目标和策略值。实验结果表明,学习变得更加稳定,使代理能够在具有更高复杂性的网格域中找到最佳策略。此外,我们还评估参数共享如何影响多代理域中的代理行为。量子采样证明是一种有希望的加强学习任务的方法,但目前受到QPU尺寸的限制,因此通过输入和Boltzmann机器的大小。
translated by 谷歌翻译
为了实现峰值预测性能,封路计优化(HPO)是机器学习的重要组成部分及其应用。在过去几年中,HPO的有效算法和工具的数量大幅增加。与此同时,社区仍缺乏现实,多样化,计算廉价和标准化的基准。这是多保真HPO方法的情况。为了缩短这个差距,我们提出了HPoBench,其中包括7个现有和5个新的基准家庭,共有100多个多保真基准问题。 HPobench允许以可重复的方式运行该可扩展的多保真HPO基准,通过隔离和包装容器中的各个基准。它还提供了用于计算实惠且统计数据的评估的代理和表格基准。为了展示HPoBench与各种优化工具的广泛兼容性,以及其有用性,我们开展了一个来自6个优化工具的13个优化器的示例性大规模研究。我们在这里提供HPobench:https://github.com/automl/hpobench。
translated by 谷歌翻译
The release of ChatGPT, a language model capable of generating text that appears human-like and authentic, has gained significant attention beyond the research community. We expect that the convincing performance of ChatGPT incentivizes users to apply it to a variety of downstream tasks, including prompting the model to simplify their own medical reports. To investigate this phenomenon, we conducted an exploratory case study. In a questionnaire, we asked 15 radiologists to assess the quality of radiology reports simplified by ChatGPT. Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed key medical findings, and potentially harmful passages were reported. While further studies are needed, the initial insights of this study indicate a great potential in using large language models like ChatGPT to improve patient-centered care in radiology and other medical domains.
translated by 谷歌翻译
Explainable AI transforms opaque decision strategies of ML models into explanations that are interpretable by the user, for example, identifying the contribution of each input feature to the prediction at hand. Such explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by finding relevant subspaces in activation space that can be mapped to more abstract human-understandable concepts and enable a joint attribution on concepts and input features. To automatically extract the desired representation, we propose new subspace analysis formulations that extend the principle of PCA and subspace analysis to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), optimize relevance of projected activations rather than the more traditional variance or kurtosis. This enables a much stronger focus on subspaces that are truly relevant for the prediction and the explanation, in particular, ignoring activations or concepts to which the prediction model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.
translated by 谷歌翻译
We consider a semi-supervised $k$-clustering problem where information is available on whether pairs of objects are in the same or in different clusters. This information is either available with certainty or with a limited level of confidence. We introduce the PCCC algorithm, which iteratively assigns objects to clusters while accounting for the information provided on the pairs of objects. Our algorithm can include relationships as hard constraints that are guaranteed to be satisfied or as soft constraints that can be violated subject to a penalty. This flexibility distinguishes our algorithm from the state-of-the-art in which all pairwise constraints are either considered hard, or all are considered soft. Unlike existing algorithms, our algorithm scales to large-scale instances with up to 60,000 objects, 100 clusters, and millions of cannot-link constraints (which are the most challenging constraints to incorporate). We compare the PCCC algorithm with state-of-the-art approaches in an extensive computational study. Even though the PCCC algorithm is more general than the state-of-the-art approaches in its applicability, it outperforms the state-of-the-art approaches on instances with all hard constraints or all soft constraints both in terms of running time and various metrics of solution quality. The source code of the PCCC algorithm is publicly available on GitHub.
translated by 谷歌翻译